
Long Term Motion Prediction Using Keyposes
Exploring Transformers and VQVAE

Dhruti Shah, Sena Kiciroglu, and Pascal Fua

Computer Vision Lab
Ecole Polytechnique Federale de Lausanne (EPFL)

{dhruti.shah,sena.kiciroglu,pascal.fua}@epfl.ch

Long term human motion prediction is essential in safety-critical appli-
cations such as human-robot interaction and autonomous driving. To
achieve long term forecasting, we predict a few keyposes and approxi-
mate intermediate ones by linearly interpolating the keyposes. In previous
work, prediction of these keyposes has been implemented using Recur-
rent Neural Networks (RNNs). Transformers have recently been shown
to achieve high accuracy in Natural Language Processing tasks. In this
work, we use transformers for keypose prediction to gain higher accuracy.
Furthermore, in previous work, keyposes have been extracted from the
data by simple clustering methods. We also explore the Vector Quantised-
Variational AutoEncoder (VQ-VAE) to obtain keyposes which are more
representative of the underlying pose data.

1 Introduction

Human motion prediction is a key component of many vision-based applications,
such as automated driving, surveillance, accident prevention, and human-robot
interaction. Its goal is to forecast the future 3D articulated motion of a person given
their previous 3D poses. [3] showed that predicting the pose in every future frame
is unnecessary because, given two poses separated by a short time interval, one can
easily guess the intermediate ones using simple linear interpolation. It is therefore
enough to predict a set of keyposes from which all others can be re- covered by
interpolation. Such keyposes are by definition sparser than the full set of future
poses and therefore easier to forecast. [3] use a RNN-based motion prediction
network that takes earlier keyposes as input and yields a probability distribution
over the clusters for each future keypose along with transition times. They extract
the keyposes for every training motion individually and collect in one set which is
then clustered into K clusters via k-means.

In this work, we replace the RNN-based keypose prediction network by a trans-
former (Section 2). Transformers were introduced in [10] initially for the task for
sequence prediction in the context of Natural Language Processing (NLP). Since
then, they have been used in various other applications like speech prediction [5],
time series forecasting [4], pose prediction [9].

Moreover, we also explore Vector Quantised-Variational AutoEncoder (VQ-VAE)
architecture to obtain better keyposes from the training data (Section 3). [3] use

mailto:{dhruti.shah, sena.kiciroglu, pascal.fua}@epfl.ch

Long Term Motion Prediction Using Keyposes

a simple k-means algorithm to cluster the poses in the training data and obtain
keyposes. In this work we try to leverage the power of VQ-VAEs to yield keyposes
which are better representative of the training data.

2 Transformers for keypose prediction

2.1 Background

The paper ‘Attention Is All You Need’ [10] describes transformers and what is
called a sequence-to-sequence architecture. Sequence-to-Sequence (or Seq2Seq) is
a neural net that transforms a given sequence of elements, into another sequence.
In the case of NLP, this sequence would be a sequence of words, and in our case
this would be a sequence of keyposes. Given as input a sequence of keyposes, we
would like to predict the following sequence of keyposes.

Transformers were initially proposed for the task of translation, where the se-
quence of words from one language is transformed into a sequence of different
words in another language. The overall architechture of the transformer architec-
ture is shown in Fig. 1. The Encoder is on the left and the Decoder is on the right.
Both Encoder and Decoder are composed of modules that can be stacked on top
of each other multiple times, which is described by Nx in the figure. We see that
the modules consist mainly of Multi-Head Attention and Feed Forward layers. The
inputs and outputs (target sentences) are first embedded into an n-dimensional
space since we cannot use strings directly.

One slight but important part of the model is the positional encoding of the
different words. Since we have no recurrent networks that can remember how
sequences are fed into a model, we need to somehow give every word/part in our
sequence a relative position since a sequence depends on the order of its elements.
These positions are added to the embedded representation (n-dimensional vector)
of each word.

The Transformer applies a mask to the input in the first multi-head attention
module to avoid seeing potential ‘future’ sequence elements. This is specific to the
Transformer architecture because we do not have RNNs where we can input our
sequence sequentially.

2.2 Modelling the transformer

The architecture of the transformer we saw in the previous section was proposed for
the task of translation. We however need a model which is used for sequence pre-
diction. Our task is analogous to the task of language modelling using transformers.
In language modelling, a part of a sentence is given as input to the transformer,
and the transformer predicts the rest of the sentence. In our case, the keyposes
of motion are analogous to words of a sentence. We would like to input a set of
keyposes, and predict the next set of keyposes that the motion would follow. Hence,

2 Transformers for keypose prediction

Figure 1: The transformer architecture as proposed in [10].

we do not need both the encoder and decoder. We just use the encoder part of the
architecture shown in Fig. 1.

We start with the model of the transformer used for sequence-to-sequence lan-
guage modelling given in [8]. The transformer model takes as input a sequence of
keyposes (kp1, kp2,kptobs), along with a mask. The mask ensures that the trans-
former cannot look at future keyposes during prediction. It outputs a right-shifted
sequence of keyposes (kp2, kp3,kptobs+1).

2.2.1 Positional encoding module
Since our model contains no recurrence and no convolution, in order for the model
to make use of the order of the sequence, we must inject some information about
the relative or absolute position of the tokens in the sequence. To this end, we add
“positional encodings” to the input embeddings at the bottom of the encoder stack.
The positional encodings have the same dimension dmodel as the embeddings, so
that the two can be summed. In this work, we use sine and cosine functions of
different frequencies:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

where pos is the position and i is the dimension. We experiment with two different
types of positional encoding modules: 1. where we assume that the input keyposes
are equidistant 2. where we inject some information about the time difference
between the keyposes into the positional encoding module. We show the results of
thes in the experiments section.

2.2.2 Mask
Along with the input sequence, a square attention mask is required because the
self-attention layers in nn.TransformerEncoder are only allowed to attend the earlier
positions in the sequence. For our task, any tokens on the future positions should

Long Term Motion Prediction Using Keyposes

be masked. Hence, we use a mask as shown in Fig. 2. This shows that to predict
the nth keypose in the sequence, the transformer will only be allowed to look at the
past keyposes i.e. from 1 to n, and will not be able to look at the future keyposes.

Figure 2: The square attention mask input the transformer, which masks the future
positions.

2.2.3 Training, Validation and Testing
The transformer takes a input a sequence of keyposes and outputs a right-shifted
sequence of keyposes. By default, internally the transformer architecture imple-
ments teacher-forcing, ie to predict the next keypose, it uses the ground-truth of
the previous keyposes and not the predicted keyposes at the previous time-steps.
During training, we use this teacher-forcing with a certain probability. We explore
different probabilities of teacher-forcing in the experiments section.

We show in Fig. 3 how the transformer training and testing works. Assume we
have a sequence of keyposes of length 20. We would like to input 8 keyposes to
the transformer and predict the next 12 keyposes. During training, with teacher
forcing, the transformer takes as input the full sequence ie kp1 to kp20 and predicts
kp2tokp21. To calculate the loss, we penalize the keyposes kp12 to kp20. During
validation and testing, we input the sequence kp1 to kp8, we get as output kp2 to
kp9. We take kp9, append it to the input sequence, and once again input this to the
transformer, to get kp10. We do this iteratively till we predict upto kp20.

2.3 Experiments

We implement our code in pytorch. Our final transformer model uses a transformer
encoder consisting of 5 nn.TransformerEncoderLayer, embedding size 200 and 2

multi-attention heads. It takes an input a sequence of probability distributions
over the keyposes for each timestep. During training, we do teacher forcing with
a probability of 0.5. We use an sgd optimizer to train the transformer. We use
data consisting of 1500 keyposes. We report the top-1 OMAC (Only Motion Action
Classifier) and FAC (Full Action Classifier) accuracies.

2 Transformers for keypose prediction

(a) Transformer training. (b) Transformer validation and testing.

Figure 3: Methodology for transformer training, validation and testing.

All of the above we obtained through a series of ablations on different parts of
the model and input data. In the following subsections, we show and discuss these.

2.3.1 Transformer model
In Fig. 4 we see the comparison between two popular transformer-based models
used for language modelling. We see that the GPT-2 [7] is built using transformer
decoder blocks. BERT [1], on the other hand, uses transformer encoder blocks.

Figure 4: The GPT-2 is built using transformer decoder blocks. BERT, on the other
hand, uses transformer encoder blocks. [2]

We started with a encoder-based model (like BERT) and compared out results
with a decoder-based model (like GPT-2), keeping the rest of the parameters of the
model constant. Table 1 shows that the encoder-based model performs superior to
the decoder-based model. This difference mainly arises because of the difference
between encoder and decoder stacks.

2.3.2 Input keypose number, teacher forcing
Unlike in an RNN-based network, for a transformer there are no explicit hidden
states which we can access which hold the current model state. Hence, the input se-

Long Term Motion Prediction Using Keyposes

Model Top-1 OMAC Top-1 FAC
Encoder-based 0.307 0.392

Decoder-based 0.289 0.332

Table 1: Comparison of performance of encoder-based and decoder-based models.

quence number for a transformer matters. We experimented with different number
of input keyposes for the sequence.

As mentioned before, during training, we input the entire sequence to the trans-
former and it outputs a right-shifted sequence. By default, at each timestep the
transformer takes in the ground-truth value of the previous keypose. This is known
as teacher-forcing. However, if teacher forcing happens all the time during training,
then this leads to a distribution shift and leads to lower validation and testing
accuracies. Hence We implement teacher forcing with a certain probability. We ex-
plore different values of teacher forcing probability along with the number of input
keyposes. The results are shown in Table 2. We observe that the model performs
best for input keypose number 10 and with a teacher-forcing probability of 0.5.

Input keyposes Output keyposes Teacher-forcing prob Top-1 OMAC Top-1 FAC
8 12 0 0.2010 0.2896

10 12 0 0.2292 0.3083

12 12 0 0.2094 0.3052

16 12 0 0.2073 0.2969

20 12 0 0.2167 0.2875

10 12 0.25 0.2188 0.3177

10 12 0.5 0.2292 0.3219
10 12 0.75 0.2146 0.2823

10 12 1 0.2115 0.2812

Table 2: Comparison of performance of model due to varying input keypose num-
ber and teacher-forcing probabilities.

2.3.3 Positional encoding module
As mentioned previously, the transformer has a positional encoding module which
injects information about the relative or absolute position of the tokens in the
sequence. These positions of tokens can be one of two ways:

1. Equidistant : We assume that the keyposes in our input sequence have con-
stant distance between consecutive keyposes.

2. Time-information : For the input sequence, we have access to time difference
between the keyposes. We can use this to inject more information into the
positional encoding module.

3 VQ-VAE for keypose estimation from training data

We observe that both the positional encoding modules described above perform
almost similar with no significant gains observed by incorporating time-based
information into the positional encoder.

2.3.4 Number of keyposes (cluster centers)
The number of keyposes in our case is analogous to the dictionary size in the lan-
guage modelling task. We ran our code with different number of distinct keyposes
in the input data and the results are shown in Table 3. We see that the accuracy
increases on increasing the number of keyposes upto a certain extent, and then
decreases again.

Number of keyposes Top-1 OMAC Top-1 FAC
150 0.2302 0.3313

1000 0.260 0.338

1500 0.307 0.392
2000 0.293 0.376

3000 0.283 0.355

Table 3: Comparison of performance of model due to varying number of keyposes.

2.3.5 Multimodality
The transformer model gives as output a probability distribution over the keyposes.
For the unimodal case, we choose the highest probability keypose and the chosen
one. To show that our model works not just in the best case, but when predicting
multiple diverse sequences, we sample the keypose from the output distribution
instead of taking the highest probability one. We then report the average accuracy
of the diverse predicted sequences. With predicting 30 diverse trajectories for each
input sequence, we get the top-1 OMAC and FAC accuarcies as 0.287/0.370.

3 VQ-VAE for keypose estimation from training data

In the original work [3], the keyposes are extracted for every training motion
individually and collected in one set which is then clustered into K clusters via
k-means. Each keypose is given a label determined by the cluster it is assigned
to. In this work, we explore a means to obtain keyposes which better capture the
data. To do this, we utilize the concept Vector Quantised- Variational AutoEncoder
(VQ-VAE) as proposed in [6].

For each pose in our data, our goal is to assign a keypose which is closest to the
pose. These keyposes transform the poses from the continuous to discrete domain.
The model we porpose learns the following: it maps each pose to its corresponding
keypose (cluster label). This is where the VQ-VAE architecture helps us.

Long Term Motion Prediction Using Keyposes

3.1 Background

[6] introduce a new family of generative models succesfully combining the varia-
tional autoencoder (VAE) framework with discrete latent representations through
a novel parameterisation of the posterior distribution of (discrete) latents given
an observation, termed VQ-VAE. Since VQ-VAE can make effective use of the la-
tent space, it can successfully model important features that usually span many
dimensions in data space.

Fig. 5 shows various top level components in the architecture along with di-
mensions at each step. Encoder takes in images x : (n, h, w, c) and give outputs
ze : (n, h, w, d). Vector Quantization layer takes ze and selects embeddings from a
dictionary based on distance and outputs zq. Decoder consumes zq and outputs x′

trying to recreate input x.

Figure 5: The VQ-VAE architecture. [11]

Fig. 6 shows the working of VQ layer. We use this block in our keypose model.

Figure 6: The Vector Quantization Layer. [11]

3.2 Model

We use the VQ block shown in previous section, along with an encoder and decoder
block. The encoder block takes in as input the sequence of poses p1, p2, ...pn. The
encoder maps takes the first and last pose of the input sequence and encodes them
to the embedding dimension. These encoded beginning and end of the sequence
are then input to the VQ block. This block maps the encoded poses to the nearest
encoded keypose. These are then input to the decoder block which converts from

3 VQ-VAE for keypose estimation from training data

embedding dimension to pose dimension. Then we interpolate between the recon-
structed beginning and end pose to get the reconstructed output sequence. The
overall model is shown in Fig.7.

Figure 7: The overall model used to obtain latent keyposes.

To train the encoder, decoder and the KP block, we use 3 different losses which
make up our total loss:

1. Reconstruction loss: which optimizes the decoder and encoder.

Reconstruction loss = − log(p(x|zq(x)))

2. Codebook loss: due to the fact that gradients bypass the embedding, we use a
dictionary learning algorithm which uses an l2 error to move the embedding
vectors ei towards the encoder output.

Codebook loss = ||sg(ze(x))− e||2

where sg refers to the stop gradient operator meaning no gradient flows
through whatever it’s applied on.

3. Commitment loss: since the volume of the embedding space is dimensionless,
it can grow arbirtarily if the embeddings ei do not train as fast as the encoder
parameters, and thus we add a commitment loss to make sure that the encoder
commits to an embedding.

Commitment loss = β||ze(x)− sg(e)||2

where β is a hyperparameter that controls how much we want to weigh
commitment loss compared to other components.

3.3 Experiments

We train our model with β = 0.25. We observe the loss profile as shown in Fig. 8.
Here loss refers to the total loss of the model, loss pos refers to the reconstruction
loss and loss vq refers to codebook loss + commitment loss. We observe that all three
losses are decreasing, however the VQ losses dominate over the reconstruction loss.

We also show in Fig. 9 a few visualizations of the keyposes chosen by the model.
In each figure, the ground-truth pose is in black, and the keypose chosen for that

Long Term Motion Prediction Using Keyposes

Figure 8: Loss profile during training the VQ-based model.

Figure 9: Vizualization of keypose chosen for each pose in a sequence. Ground-
truth pose is in black, and the keypose chosen for that pose, by our model, is
shown in red.

4 Future work

pose is shown in red. Each row corresponds to a sequence of movement, and we
shown three different sequences.

Finally, the goal of the model was to choose appropriate cluster centres for the
poses, which are represented by keyposes. In Fig. 10 we show a few keyposes
which form the cluster centers.

Figure 10: Vizualization of the keyposes corresponding to the cluster centres.

4 Future work

When we use transformers for keypose prediction, we use the keyposes generated
by k-means clustering. Combining the two parts, we can use the trained VQ-based
model to predict keyposes and use these for keypose prediction using transformers.
Further, there exists scope for improvement in the VQ-based model architecture.

References

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of deep
bidirectional transformers for language understanding”. In: arXiv preprint
arXiv:1810.04805 (2018).

[2] Illustrated GPT2. url: https://jalammar.github.io/illustrated-gpt2/.

[3] S. Kiciroglu, W. Wang, M. Salzmann, and P. Fua. “Long Term Motion Predic-
tion Using Keyposes”. In: arXiv preprint arXiv:2012.04731 (2020).

https://jalammar.github.io/illustrated-gpt2/

Long Term Motion Prediction Using Keyposes

[4] B. Lim, S. O. Arik, N. Loeff, and T. Pfister. “Temporal fusion transformers
for interpretable multi-horizon time series forecasting”. In: arXiv preprint
arXiv:1912.09363 (2019).

[5] L. Lu, C. Liu, J. Li, and Y. Gong. “Exploring transformers for large-scale
speech recognition”. In: arXiv preprint arXiv:2005.09684 (2020).

[6] A. v. d. Oord, O. Vinyals, and K. Kavukcuoglu. “Neural discrete representa-
tion learning”. In: arXiv preprint arXiv:1711.00937 (2017).

[7] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. “Language
models are unsupervised multitask learners”. In: OpenAI blog 1.8 (2019),
page 9.

[8] SEQUENCE-TO-SEQUENCE MODELING WITH NN.TRANSFORMER AND
TORCHTEXT. url: https://pytorch.org/tutorials/beginner/transfo
rmer_tutorial.html.

[9] L. Stoffl, M. Vidal, and A. Mathis. “End-to-end trainable multi-instance pose
estimation with transformers”. In: arXiv preprint arXiv:2103.12115 (2021).

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. “Attention is all you need”. In: arXiv preprint
arXiv:1706.03762 (2017).

[11] vqvaeblog. url: https://blog.usejournal.com/understanding-vector-
quantized-variational-autoencoders-vq-vae-323d710a888a.

https://pytorch.org/tutorials/beginner/transformer_tutorial.html
https://pytorch.org/tutorials/beginner/transformer_tutorial.html
https://blog.usejournal.com/understanding-vector-quantized-variational-autoencoders-vq-vae-323d710a888a
https://blog.usejournal.com/understanding-vector-quantized-variational-autoencoders-vq-vae-323d710a888a

	Long Term Motion Prediction Using Keyposes

